Department of Pharmaceutical Sciences
Art of the nationally acclaimed School of Pharmacy, UConn’s Department of Pharmaceutical Sciences allows our graduate students to customize their studies to align with their research interests, collaborate with world-renowned faculty, and pursue specialized training to complement their core studies.

With nineteen faculty members, UConn’s Department of Pharmaceutical Sciences offers expertise in Pharmaceutics and Medicinal Chemistry, as well as Pharmacology and Toxicology. Our faculty, whose research and discoveries have resulted in patents, contracts and improved health worldwide, are eager to mentor those who share their passion to contribute to the global scientific community. At UConn, our graduate students enjoy a robust partnership with their faculty mentors.

In addition to specialized research training in areas such as drug discovery, mode of action, drug formulation, and safety, all disciplines have unique core courses providing fundamental concepts critical to each discipline. Our department enjoys significant success in placing our Pharm.D. and Ph.D. graduates both locally and nationally in government, industry, and academia.

The flexibility of our program also allows Pharm.D. candidates to customize their studies to garner additional expertise within pharmaceutical sciences and related research. Designed for students who want to work as a pharmacist for a pharmaceutical company or are planning to pursue a joint Pharm.D./Ph.D. degree, this course of study allows a wide range of options and offers easy integration with existing science minors and UConn’s pharmacy program.
Pharmaceutics, the science and engineering of drug dosage form design, is a multi-disciplinary field requiring expertise in chemistry, engineering, pharmacy, material science, mathematics, and the biological sciences. Research areas range from fundamental studies of the physiochemical properties of drugs and related molecules to dosage form design, processing and manufacturing, as well as dosage form in vitro and in vivo characterization and performance testing.

At the cusp of innovation, pharmaceutics sets the stage to make beneficial contributions to patients’ healthcare as well as to the scientific community. Pharmaceutical scientists are currently developing new materials and formulations for improved drug delivery systems, and engineering new systems to improve and expedite the drug development process. Active research is crucial in this graduate program and emphasizes the physical, chemical and engineering aspects of pharmaceutics. Our graduate students also have the opportunity to participate in the highly acclaimed Kildsig Center for Pharmaceutical Processing Research (cppr.uconn.edu).

Pharmaceutics graduate students typically do a summer internship in the pharmaceutical industry and obtain employment in the industry, government or academia upon graduation.
At the intersection of chemistry and biology, Medicinal Chemistry is a robust area of research and study focused on the development of new drugs to treat human diseases. Key areas of concentration within the discipline are structural biology, including the determination of drug target structures using X-ray crystallography and nuclear magnetic resonance (NMR), the design, synthesis, and evaluation of new therapeutic agents; the isolation and identification of marine natural products, and elucidating cellular signaling pathways with small molecule probes.

Current research projects span the development of small molecule therapeutics for cancer, infectious disease, and a variety of neurodegenerative disorders. Additional ongoing projects are aimed at understanding signaling as it relates to cell proliferation, adhesion and trafficking, and exploring the interactions between the cannabinoid receptor and its cytosolic regulatory proteins.

Ph.D. graduates are intellectual leaders in drug development, discovery and research, investigating both medicinal agents found in plants and new synthetic drug possibilities.

Marcy Balunas
Associate Professor
Research Focus: Host-associated microbial communities as unique sources for natural products drug discovery, using these to search for new, targeted drug leads and to address critical questions within the broader field of chemical ecology. Advanced analytical techniques such as mass spectrometry/metabolomics, high throughput screening, flow cytometry-based assays, one- and two-dimensional nuclear magnetic resonance, and state-of-the-art chromatographic separation techniques.

M. Kyle Hadden
Associate Professor
Research Focus: Early stage drug development focusing on the design, synthesis, and evaluation of small molecules as therapeutic agents for the treatment of cancer.

Debra Kendall
Distinguished Professor
Research Focus: Cannabinoid receptor activation by ligands including allosteric modulators, biased signaling, and signaling transduction. G-protein coupled receptor activity in pain.

Olgia Vingradova
Associate Professor
Research Focus: Structural biology, protein-protein/ protein-ligand interactions, rational drug design, integral membrane proteins and across-membrane signal transduction, nanodiscs, NMR.

Andrew Wiemer
Associate Professor
Research Focus: Discovery of drugs and drug targets related to cancer and immunology

Dennis Wright
Professor
Research Focus: The design, synthesis and development of small molecule therapeutics primarily for the treatment of infectious disease and cancer.
Brian Aneskievich
Associate Professor
Research Focus: Molecular pharmacology of cell membrane and nuclear receptor signaling control over regulation of gene expression relevant to chronic inflammatory diseases, defects in differentiation, and cancer proliferation.

David Grant
Professor
Research Focus: Development of analytical and computational tools that allow high-throughput chemical structure determination. These tools advance research in metabolomics, biomarker identification, and drug design.

James Halpert
Professor and Dean
Research Focus: Structural basis of cytochrome P450 specificity: importance for prediction of drug metabolism and of individual susceptibility to environmental toxicants.

Xiaobo Zhong, Professor, talks to his graduate students on the development of precision medicine based on drug metabolism.

The Pharmacology & Toxicology discipline aims to understand the molecular, cellular, and behavioral effects of drugs, chemicals, and environmental toxicants on biological systems. Students in the Pharmacology & Toxicology graduate program receive didactic and research training in a collaborative, multidisciplinary environment. Our overall research goals are to identify and understand molecular mechanisms of disease pathology and to develop better diagnostic tools and pharmacological therapies. Current areas of research include: drug metabolism, hepatotoxicity, metabolomics, epigenetics, non-coding RNA, inflammation, nuclear receptor signaling, teratology, substance use disorder, behavioral pharmacology, and personalized medicine.
Located at our main campus in Storrs, the School of Pharmacy features state-of-the-art labs, easy access to New York, Boston, Hartford, and Providence, and robust interdisciplinary collaboration. Ranked among the top twenty-five public research universities in the nation, UConn is dedicated to human health and scientific research. Our Innovation Partnership Building at Tech Park houses business partners from around the globe who partner with our faculty to conduct innovative, cross-disciplinary research in fields ranging from manufacturing to biomedical engineering to cybersecurity. At nearby Farmington, our UConn Health campus, also home to Jackson Laboratories, is an integrated academic medical center that is entering an era of unprecedented growth in all three areas of its mission: academics, research, and clinical care.

Application portals:
- PhDgrad.uconn.edu
- Pre-pharmacy admissions.uconn.edu (please check pre-pharmacy on the application)
- PharmD (use PharmCAS. Transfers will also apply through admissions.uconn.edu)
- PhD grad.uconn.edu

Join our World–Renowned Team

Andrea Hubbard
Associate Professor
Academic Focus: Areas of basic and pharmacologically applied immunology, effect of xenobiotics on immune function (immuno-toxicology) and effects of air pollutants on pulmonary immunology.

José Manautou
Professor and Interim Department Head
Research Focus: Identification and characterization of novel genetic determinants of susceptibility to chemical hepatotoxicity, regulation of liver transporters, and chemical models of hepatoprotection.

Theodore Rasmussen
Associate Professor
Research Focus: Personalized medicine, stem cell research, and epigenetics as related to cholesterol dysfunction, birth defects, and reproductive biology.

Gregory C. Sartor
Assistant Professor
Research Focus: Animal models of drug addiction; epigenetics, cell type-specific analysis, and drug discovery.

Xiaobo Zhong
Professor
Research Focus: Mechanistic roles of long non-coding RNAs in postnatal liver maturation, alteration of drug metabolism in adults by drug exposure at early life, interindividual variations on drug metabolism and personalized medicine.

José Manautou, Professor and Interim Department Head, discusses the histopathological findings of liver sections with a research assistant professor.

Diane Burgess, Distinguished Professor, Pfizer Distinguished Chair of Pharmaceutical Technology, and members of her complex parenterals continuous manufacturing research team during a site visit from the F.D.A.
A post-doctoral research associate in the Wiemer lab collects his compound from a column.